дsдo@s N

samosbs N

$$
3.1
$$

$$
u=I R
$$

$\pm \rho_{1} \frac{1}{5}=\rho_{1}-\rho_{2}$
$\pm \rho_{2} \frac{1}{5}=l_{2}-l_{3}$

n buhjugdanc $\frac{q}{2 \varepsilon_{0} S}$
3)c dulasf $06 \mathrm{~m} C$

дьдо@s N
9

210
sambsбs N
3.2
 4ognes jogsho
 dyngn 3560
3.2.1.2)
 - fing ug jo byofl dogn $\left.t_{3}\right)^{5} \quad 3 \cdot 3 n 8 j^{\text {ba }}$ ay jbs」

$$
\frac{\rho_{\rho}\left(\rho g x^{\prime}+2 \rho_{0}\right)}{2}=x-x^{\prime \prime} \quad \frac{\beta \rho_{g} x^{\prime 2}}{2}+x^{\prime}-x=\frac{\beta p_{0}}{4}=0
$$

$$
\begin{aligned}
& \frac{\Delta V}{V}=\frac{\Delta h^{\prime}}{d X}=-\beta \rho_{\partial g} X
\end{aligned}
$$

$$
\begin{aligned}
& \Delta 4=\int_{0}^{4}-\beta \rho_{g} x d x=\int_{0}^{4}-\frac{\rho \rho g x^{2}}{2}=
\end{aligned}
$$

дsзoœs N
9

210
sдmঞssธs N
3.2

$$
x^{\prime}=\frac{-1+\sqrt{\left(\frac{\beta \rho_{y}}{2}\right)^{2}+4\left(x+\frac{\beta, \rho_{0}}{4}\right) \frac{\sqrt{3}^{\prime} g \rho_{0}}{2}}}{2 \sqrt{3} \rho_{0} g} \operatorname{bugn} 6 \sigma_{33}
$$

$2 \frac{33}{2} \log$
$g \cap P(x)=\rho_{x^{\prime} g}=\rho_{g} \sqrt{\left(\frac{\beta \rho_{g}}{2}\right)^{2}+2\left(x+b r d j_{g} \rho_{g}\right.}$
Bubog

$$
\frac{\Delta V}{V}=\frac{\frac{\Delta m}{\frac{\Delta g}{m}}}{\frac{S_{0}}{\rho_{0}}}=\frac{\Delta \zeta}{\rho_{0}}=-\beta \Delta p
$$

 (anabab, byenc lashozol omgo
3.2.2.1) hopuev h (najusodgo byenc
ang buhamabagn jsoyblyc? $300^{\circ c}$

$$
\begin{aligned}
& P(h)=\rho g h+p_{0}+E q=\rho_{g} h+p_{0}-\frac{Y}{2 \varepsilon_{0}} \cdot q= \\
& =\rho_{g} h+P_{0}-\frac{Y}{2 \varepsilon_{0}} \cdot(H-h) y
\end{aligned}
$$

дऽฉ๐@s N
3.3.1.1)

$$
\begin{aligned}
& x=V_{0} \sin \alpha_{0} t \\
& y=V_{0} \cos \alpha t-\frac{g t^{2}}{2}
\end{aligned}
$$

3.3.1.21 $y=x \operatorname{ctg} \alpha-\frac{g x^{2}}{2 V_{0}^{2} \sin ^{2} \alpha}$
3.3.1.31 ulzal fim $t=\frac{\mathbb{N o c o s} \%}{g}$

$$
\text { ghginc ghm } t=\frac{2 v_{0} \cos \sigma}{g}
$$

$$
s=\frac{2 V_{0}^{2} \sin \alpha_{0} \cos \alpha_{0}}{g}
$$

3.3 .1 .41

$$
\begin{aligned}
\sin \alpha & =\frac{v_{x}}{V} ; \\
V=\sqrt{v_{y}^{2}+V_{x}^{2}} & =\sqrt{\left(V_{0} \cos \sigma_{0}-g_{t}\right)^{2}+\left(V_{0} ; i n d_{0}\right)^{2}} \\
V_{x} & =V_{0} \sin d_{0}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{g v_{0}^{2} \cos ^{2} g_{0}}{2 g^{2}}
\end{aligned}
$$

дsдo@s N
9

210

sam	
6505	N

$$
\begin{aligned}
& y=V_{0} \cos d_{6} t-\frac{g t^{2}}{2} \\
& \sin \alpha=\frac{V_{0} \sin \alpha}{\sqrt{\left(V_{0} \cos \alpha_{0} t-g t\right)^{2}+\left(V_{0} \sin \alpha_{0}\right)^{2}}}= \\
& \text { Vosing } \\
& =\frac{V_{0} \sin }{\sqrt{V_{0}^{2} \cos ^{2} \alpha_{0}+V_{0}^{2} \sin ^{2} \partial_{0}-2 V_{0} \cos \alpha_{0} g t+g^{2} t^{2}}}= \\
& \text { Vosin } \alpha \\
& =\frac{}{\sqrt{-2 g\left(V_{0 C O S} \sigma_{0} t-\frac{g t a}{2}+V_{0}^{2}\right.}} \text { 0.0. } \\
& \sqrt{y \cdot(-2 g)+v_{0}^{2}} \cdot \sin d=\cos t \\
& f(y)=\sqrt{\left.y-(-2 g)+V_{0}^{2}\right)}
\end{aligned}
$$

 дypoos $3^{\text {shepo }}$ (yjbul $\left.\quad 2, f_{3} J^{5}\right)^{6} y_{5}$?

$$
\frac{\operatorname{sindo}}{\sin a_{1}}=\frac{u_{1}}{n_{0} 0} \quad \frac{\sin d_{1}}{\sin d_{2}}=\frac{u_{2}}{u_{2}} \sin \sin _{2} \sin _{2}=n_{3} \uparrow
$$

bygnlaghn 30 Enlazal

дsд๐@s N
9

sambsts N	3.3

 \square
210

$$
\begin{aligned}
& \text { Codshagoo6no } \frac{\sin d_{0}}{\sin d_{n}}=\frac{n_{n}}{u_{0}} \text { J.0. hajou y Enoritos } \\
& \frac{\sin d_{0}}{\sin \alpha}=\frac{h_{0} \sqrt{1-x g}}{u_{0}} \\
& \sqrt{d-y} \sin \alpha=\sin d_{0}=\operatorname{cosst} \quad \mathrm{J} \\
& f(y)=\sqrt{1-y_{y}} \quad \text { shy } y^{2} \\
& f(g)=\sqrt{y(-2 g)+v_{0}{ }^{2}} \text { J... } \\
& \text { auzu(ygas? zubsal }
\end{aligned}
$$

3.3.2.2.) Jnhonbubunlupd sjabra zothenfign lbjygnlaznc $\quad h_{\text {map }}=+\frac{V_{0}^{2} \cos ^{2} d_{0}}{q}+\frac{V_{0}^{2} \cos ^{2} d_{0}}{2 \log ^{2}}$
 $2 g=X \quad$ Ansujajs I, igaboseog $h_{\text {max }}-\frac{\cos ^{2} d_{0}}{y}$
Juhnombealogan byabra zuchings lbyyeil gunc $S E \frac{2 V_{0}{ }^{2} \text { sindocosto }}{\phi}$ J...j6ev 3

aszo@s N
9
samossbs N

$$
3.3
$$

210

$$
\begin{aligned}
& S=\frac{\sin 2 d o}{x} \\
& \text { 3.3.3.1) } \quad g=G \frac{\mu}{f^{2}} \\
& a M=g b^{2} \\
& =G-\frac{M_{m}}{\mu_{0}^{2}}=\frac{\operatorname{lin}_{0}{ }^{2}}{\mu_{0}} \\
& \Gamma_{0}=\frac{G \mu}{V_{0}^{2}}=\frac{q R^{2}}{V_{0}^{2}} \\
& 3-3.3 .21-G \frac{M m}{\Gamma_{0}}+\frac{m v_{0}^{2}}{2}=-\frac{G M}{\Gamma^{2}}+\frac{\ln v^{12}}{2} \\
& V^{\prime}=\sqrt{2 G M\left(\frac{1}{\Gamma}-\frac{1}{\Gamma_{0}}\right)+V_{0}^{2}}=\sqrt{2 y R^{2}\left(\frac{1}{\Gamma^{\prime}}-\frac{1}{1}\right)+V_{0}^{2}} \\
& \text { 3.3.4.1) (aboapo yn } 3 \text { ssanc ydankyc } \sqrt[3]{\sin 6}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{n} b n \partial \rho \in \text { yhn J.n. } \Gamma_{0}^{2}\left(1-x \Gamma_{0}\right) \text { you } \\
& \text { nyn } \text { dntonosyhn. }
\end{aligned}
$$

aszo@s N
sдmßsธs N

5

$$
\begin{gathered}
\frac{\partial\left(r_{0}\left(1-x F_{0}\right)\right)}{\partial r_{0}}=\Gamma_{0}^{2}(1-y)+2 s_{0}\left(1-y r_{0}\right)=0 \\
r_{0}\left(r_{0}(1-3 x)+2\right)=0,0 \\
r_{0}=\frac{-2}{1-3 y}
\end{gathered}
$$

